Everything You Know
(about Parallel
Programming)

Is Wrong!
A Wild Screed

about the Future

David Ungar
Sam Adams, Doug Kimelman, Mark VWegman
IBM Research

How we got Smalltalk

® PARC living in the future with expensive but
fast hardware + graphics

® cycles for
® interpreter
® dynamic dispatch
® garbage collection
® small methods

® reusable collection classes

© IBM Researc h. Presen ted by David Ungar at Splash 2011 2

Wednesday, November 2, 11

Now, the future is manycore
o Why!?

® Continued demand to handle more data

® clock speed -
® device density-

® VWhat!

® Much less (fast) memory per thread
® Spatial locality critical for performance

® Many (slower) cycles, all at the same time

© IBM Research. Presented by David Ungar at Splash 2011 3

Wednesday, November 2, 11

Fundamental Issues

Amdahl’s law

| core, |10 secs

|0 cores 00 cores
2 secs > | sec

© IBM Research. Presented by David Ungar at Splash 2011

Wednesday, November 2, 11

Scaling

implies

P
- . i -3 . - O™
- - » ..,'
- . 2 > 0. i
- 7 -
- . ’.(s.
: * - - = o
N on 5 ° 24 - S
)y S o - s -
4 .
-
- - 4 - -
‘ J
m/‘
. ‘ 5
> ~a
. . oo © > Y-y %
3 < . u O O o @
: . - > - <Ecr. 3aile
- v - T i et
e ’ o
- P £ S . -
p -
.. ~ - s
R aw.- > = '_' -
o - o ~
e B3 A * .
. § © - o -

© IBM Research. Presented by David Ungar at Splash 2011 o)

Wednesday, November 2, 11

Synchronization is Bad

performance

Too much = slow
Too little = errors

Why can’t we eliminate synchronization
(in the programming paradigm)?

/

Fundamental Issues

Many-core (100s)

Multi-core (2-16) Too complex

Single Core Very complex
Simple
Yesterday Today Tomorrow
© IBM Research. Presented by David Ungar at Splash 2011 O]

Wednesday, November 2, 11 9

Too hard to
get it right
when parallel

Cannot even try to
get it right
without synchronization

10

The future:
No sync at all

® “anti-lock”

® “race-and-repair”

® “end-to-end nondeterminism”
® Without synchronization:

® will not always get exact answers

© IBM Research. Presented by David Ungar at Splash 2011 11

Wednesday, November 2, 11

Get it wrong,
quickly,
but still

right enough

Fundamental trade-off!

yerformance correctness

© IBM Research. Presented by David Ungar at Splash 2011 13

Wednesday, November 2, 11

Fundamental / \l

-nsembles &
Adverpbs

-resheners &

Breadcrumbs
Mitigate,
Race,
Repair Locals &
Breadcrumbs
o1 s, sty Do ngr st 201 14

Wednesday, November 2, 11

Juliet

Spoiler alert!

http://karenswhimsy.com/romeo-and-juliet.shtm
© IBM Research. Presented by David Ungar at Splash 2011 15

Wednesday, November 2, 11

http://karenswhimsy.com/romeo-and-juliet.shtm
http://karenswhimsy.com/romeo-and-juliet.shtm

Friar Lawrence hatches a plan

© IBM Research. Presented by David Ungar at Splash 2011 106

Wednesday, November 2, 11

17

iar John is sent to tell
Romeo

Fr

(g}
-
it
-
b
v X
=
9
O
s
U
=
m—

© IBM Research. Presented by David Ungar at Splash 2011

1
-
ol
o~
o)
Qo
£
o
>
o
Z
>
®©
e,
N
o)
-
e,
=

® John is delayed by quarantine

® Servant tells Romeo that Juliet is dead
® Romeo goes to tomb

® Romeo kills himself

® Friar Lawrence arrives with message to
Romeo

© IBM Researc h. Presen ted by David Ungar at Splash 2011 18

Wednesday, November 2, 11

i T L ruy
. s e T Y
21 A"'.,'_H.,.._\;
(e

71;',

PN

AN Oy
13 e

Juliet wakes
to find a

dead Romeo

B TR
WP INYof f A Te

r

© IBM Research. Presented by David Ungar at Splash 2011

Wednesday, November 2, 11

IR SRR :
5 AT
- '&:\3" 2 .gvaiz..:c: -

' ":*‘\'\ *.“'v A
y ,. .‘.‘ ’

Juliet kills herself

© IBM Research. Presented by David Ungar at Splash 2011 240)

Wednesday, November 2, 11

Summary

® |uliet feigns death to avoid marrying Paris

® Friar Lawrence sends Friar John to tell Romeo of
plan

® John is delayed by quarantine

® Servant tells Romeo that Juliet is dead

® Romeo goes to tomb

® Romeo kills himself

® Friar Lawrence arrives with message to Romeo

® Juliet wakes, sees Romeo dead, kills herself

© IBM Researc h. Presen ted by David Ungar at Splash 2011 21

Wednesday, November 2, 11

Romeo Juliet

fakes death

hears of plan

goes to tomb

4

awakens

The original plan:
A happy ending

© IBM Researc h. Presen ted by David Ungar at Splash 2011 29

Wednesday, November 2, 11

Friar Romeo Juliet

fakes death

hears of death

goes to tomb

kills himself

hears of plan
4

awakens

Race condition: sees R dead
Incorrect result ills herself

© IBM Research. Presented by David Ungar at Splash 2011 23

Wednesday, November 2, 11

Friar Romeo Juliet

fakes death

hears of death

hears of plan

goes to tomb

awaens
Wiaiting before side-effec

Improves chances

© IBM Researc h. Presen ted by David Ungar at Splash 2011 24

Wednesday, November 2, 11

Fundamental trade-off

yerformance correctness

© IBM Research. Presented by David Ungar at Splash 2011 25

Wednesday, November 2, 11

Other Ideas
(not really covered)

“Lock-Free” algorithms

® Critical section limited to atomic
Instructions

® compare-and-swap

® |warx & stwx
® |nstruction may “fail” forcing a retry loop
® No waiting visible to programmer

® But atomic instructions implicitly
synchronize

= may not scale!

© IBM Researc h. Presen ted by David Ungar at Splash 2011 27

Wednesday, November 2, 11

Read-Copy Update

Readers run concurrently with updaters
Updaters update a copy if needed

After all readers done, updaters serially swap-
in updated copy

Handles removal

Good lessons to learn

Still pays synchronization costs, esp. for
updating: guaranteed to not miss updates

© IBM Researc h. Presen ted by David Ungar at Splash 2011 28

Wednesday, November 2, 11

Functional Programming

® | ack of side-effects hides many ordering
dependencies

® But,a poor match for modeling stateful
systems

® Functional composition: f(g(x))
® still induces ordering dependencies

=» some synchronization required

© IBM Research. Presented by David Ungar at Splash 2011 29

Other Deterministic
Programming Approaches

® | et the programmer specify dependencies
® System reorders and parallelizes execution

® Does not push programmer hard enough
to relinquish determinism

© IBM Research. Presented by David Ungar at Splash 2011 10

Actors

® Determinism within an actor eases
programming task

® But, message arrival ordering still creates
need to deal with nondeterminism

© IBM Researc h. Presen ted by David Ungar at Splash 2011 31

Wednesday, November 2, 11

Other approaches
still cling to

correctness

Root cause:
Our Attraction to Certainty

® Definite state
® x holds |7
® Definite order
® input => process = output
® serialized message queues
® Definite results
o |+]| =2

© IBM Research. Presented by David Ungar at Splash 2011 33

Wednesday, November 2, 11

Fundamental /°

Ensembles &
Adverbs

-resheners &

Breadcrumbs
Mitigate,
Race,
Repair Locals &
Breadcrumbs
o1 s, sty Do ngr st 201 s

Wednesday, November 2, 11

Biology, not Math

Massive parallelism with state:

Many locally (re)acting individuals

Surprisingly complex overall behavior

Emergence

© IBM Research. Presented by David Ungar at Splash 2011 35

Wednesday, November 2, 11

Birds don’t need 1T calculus

Separation: steer to av@j{d
crowding local flockm3dt&s:

Alignment: steer towarddSliE
average heading of locdl
flockmates

the average position offiota
flockmate

Craig Reynods, 1986, Boids
o 1Bk RESRnPREDR AN DxeRARYS: 2 Sisti Ry fed Behavioral Model) 3¢

Wednesday, November 2, 11

50 SlyBoids, 50 Tilera cores

rarallz2] serjyicias

© IBM Research. Presented by David Ungar at Splash 2011 38

Wednesday, November 2, 11

Ensemble computation varies from

Independent Dependent
& Parallel & Serial
Ensemble Reduced to a
of results Single Object

|dea:

Separate how from what (and who);
factor out the strategy:
subject + verb + adverb

receiver.selector(argument --modifier)

© IBM Researc h. Presen ted by David Ungar at Splash 2011 39

Wednesday, November 2, 11

Fundamental /°

-nsembles &
Adverpbs

Fresheners
Breadcrum

Mitigate, /"

Race, ~_

Repair ™ Locals &
Breadcrumbs

© IBM Researc h. Presen ted by David Ungar at Splash 2011 40

Wednesday, November 2, 11

What’s a cube!

(OLAP = Online Analytical Processing)

® TJo a first approximation: It’s a
multidimensional spreadsheet

© IBM Researc h. Presen ted by David Ungar at Splash 2011 41

Wednesday, November 2, 11

Our OLAP Cubes’
Features

® |nh-memory — to be practical for interactive
update / recalculate

® Not represented by a standard Relational
Database, thus MOLAP

® Write-back — users update values e.g. for
financial forecasting / budgeting

® Concurrent — up to 100’s or 1000’s of users

© IBM Research. Presented by David Ungar at Splash 2011 492

Users VWant Scalability

® Budget deadlines, 1000’s of users, some
doing vast queries, many others doing
detailed entry and review

® Scaling / Performance wall (long running
reads, serializing writes)

® Readers-writer lock contention

© IBM Researc h. Presen ted by David Ungar at Splash 2011 43

Wednesday, November 2, 11

Data cells linked by
onhe-way constraints

® Could be any (acyclic) shape
® “Entered Cells” = user types in data
® “Computed Cells” = hold sums, etc.
® Aggregates & Formulae results
® Computed on demand

® Cache results for performance

© IBM Research. Presented by David Ungar at Splash 2011 44

entered cells

2010 Q2,
tuna,
quantity:
15

computed cells

© IBM Research. Presented by David Ungar at Splash 2011

Wednesday, November 2, 11

45

2010 Q1, 12010 Q1, || 2010 Q1, || 2010 Q1, 2010 Q2, || 2010 Q2, || 2010 Q2,
cod, cod, tuna, tuna, cod, cod, tuna,
unitPrice: || quantity: || unitPrice: || quantity: unitPrice: || quantity: || unitPrice:
2 10 3 15 2 10 3

2(0] [ON@RE 2010 al.
od, tUnA, al
ost: qugntity: quaniity:
X + + ¥+

Nalve CaChlﬂg 2010 Q1, || 2010 Q1,

cod, cod,

OA. unitPrice = 2, quantity = 10 unitPrice: || quantity:

. 3 10
1A. Alice requests cost
2A. Alice sees empty cache N f

A. value calculated is 2
3 © edis 20 2010 QT,
4A. 20 is cached to _ cod,
save recalculation cost:
30
1B. Bob changes unitPfice,

invalidates cache

time

1C. Cathy requests cost
2C. Cathy sees empty cache

3C. Cost recalculated & cached
4C. Cathy gets fresh cost

Works when serial
Fails when concurrent

© IBM Research. Presented by David Ungar at Splash 2011 406

Wednesday, November 2, 11

Naive caching fails:
OA. unitPrice = 2 leaves stale result cached forever

1A. Alice requests cost value

2A. calculation commences

1B. Bob changes unitPrice to 10

2B. cost cache is invalidated

b0
=
4=
K
>
o
S
¥

3A. calculation finishes,
stores wrong value in cache

time

1C. Cathy requests cost,
reads wrong value from cache

1D. Dan requests cost,
reads wrong value from cache

1E. Elly May requests cost,
reads wrong value from cache

© IBM Research. Presented by David Ungar at Splash 2011 47

Wednesday, November 2, 11

Naive parallel solution:
lock allows N readers OR one writer
OA. unitPrice =2
1A. Alice requests cost value, gains lock

2A. calculation commences

1B. Bob tries to change unitPrice,
has to wait for lock

3A. calculation finishes,
stores iffy value in cache
releases lock

time

2B. Bob gets lock,
changes unitPrice,
Invalidates cost cache,
releases lock

1C. Cathy requests cost,
gets lock, sees empty cache,
recalculates & caches,
reads right value from cache
releases lock

© IBM Research. Presented by David Ungar at Splash 2011 48

Wednesday, November 2, 11

time

Asynchronous freshener
OA. unitPrice = 2 eventually fixes error
1A. Alice requests cost value WithQut Iocking

2A. calculation commences

1B. Bob changes unitPrice to 10

2B. cost cache is invalidated

00
.E
fw)
L"
-
L
(v
o

3A. calculation finishes,

stores wrong value in cache

¢¢ e 99
1C. Cathy requests cost, race and repalr

reads wrong value from cache

1F. Freshener recalculates cost cell, caching result

1D. Dan requests cost,
reads right value from cache

1E. Elly May requests cost,
reads right value from cache

© IBM Research. Presented by David Ungar at Splash 2011 49

Wednesday, November 2, 11

time

Breadcrumbs: Avoid caching
1A. Alice requests cost value (some) stale results
2A. Alice drops her breadcrumb Mitigate nondeterminism

3A. calculation commences

1B. Bob changes unitPrice to 10

2B. cost cache is invalidated

00
-
fw
Ky
=
-
(4!
O

3B. Bob drops his breadcrumb

4A. calculation finishes

5A. Alice picks up Bob’s breadcrumb,
aborts cache store, gets reasonable result

1C. Charles requests cost,
cache is empty, recalculates and caches right result

1D. Doris requests cost,
reads right value from cache

ImPerfeCt 1E. Ephraim requests cost,
Many var’iations reads right value from cache

© IBM Research. Presented by David Ungar at Splash 2011 50

Wednesday, November 2, 11

Synchronization
prevents scaling

Scaling on Mac

300,000
250,000
200,000
150,000
100,000

50,000

Smalltalk version

no sync

operations completed

0 1 2 3 4 5 6 7 likely Smalltalk

cores Scaling on Tilera Virtual Machine

30,000 limit
25,000
20,000
15,000
10,000
5,000

operations completed

0 10 20 30 40 50 60

cores
© IBM Research. Presented by David Ungar at Splash 2011 51

Wednesday, November 2, 11

Reducing incidence of
staleness without sync

Staleness creation on Mac Staleness creation on Tilera
8%
7%
6%
5%
4%
3%
2% |
1% &
0%

stale caching frequency

5 3 4 5 6 7 8 2 10 18 26 34 42 50 58

worker threads # worker threads

600 cell Fish Market, Smalltalk model

© IBM Research. Presented by David Ungar at Splash 2011 52

Wednesday, November 2, 11

Invalidation + Breadcrumbs
+ Round-Robin Fresheners

| year Fish Market, Smalltalk model

Mac: Tilera:
always use 8 cores always use 16 cores
O to 7 fresheners O to 14 fresheners
8 down to 1 workers 16 down to 2 workers

10%

stale query freq.
stale query freq.
o
X

75% 100%

pct. freshener time

0% 25% 50% 75% 100% 0% o 50%

pct. freshener time

Example:
With one freshener per worker, < 20% of results
were stale

© IBM Researc h. Presen ted by David Ungar at Splash 2011

Wednesday, November 2, 11

How stale!?

Mac: Tilera:
always use 8 cores always use 16 cores
0 to 7 fresheners 0 to 14 fresheners
8 down to 1 workers 16 down to 2 workers

0
O
o)
S
= 0% 25% 50% 75% 100%
S 0% 25% 50% 75% 100% o 25% 50% 75% 0
= 20 10 at 1 freshener per 1
UE) ° 15 PR worker,
5 % 10 L 2 90% of the stale
=Y
S5 5 S results are < 8 query
> 0 0 times stale.
< 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
L 6o
[.
o
> . 40
— £

20

0

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

© IBM Research. Presented Q@Imﬁ’lﬁgﬁh@ﬂﬁl’h’ﬂme pC’@-ﬂ{reShener time

Wednesday, November 2, 11

How often & how stale?

Tilera: using 16 cores, 0 — 14 fresheners, 16 — 2 workers16 down to 2 workers

30%

. 25%

8
£ 20% .

- 150, With one freshener per worker,
3 < 20% of results were stale
% 10%
17

5%
0%

v

0% 25% 50% 75% 100% 90, only 2% of all queries
pct. freshener time return results staler than 8.

10
8 +
2 6
© at 1 freshener per 1 worker,
s 4 90% of the stale results are < 8
5 query times stale
0
0% 25% 50% 75% 100%
© IBM Research. Presented by David Ungar at Splash 2011 55

Wednesday, November 2, 11

Summary: Fresheners

® |[nstead of synchronizing cache invalidation with
recomputation, allow data race errors

® Freshen possibly-stale caches in parallel
® < 2% queries staler than 8 query times

® Race & Repair: Antilock Computing

Embrace and manage inconsistency to
enable scaling

Inconsistency Robustness for Scalability in
Interactive Concurrent-Update In-Memory

MOLAP Cubes,

with Kimelman & Adams
© IBM Researc h. Presen ted by David Ungar at Splash 2011 56

Wednesday, November 2, 11

Fundamental /"

-nsembles &
Adverpbs

—resheners &
Breadcrumbs

Mitigate,
Race,
Repalr - ~ Locals &

Breadcrumbs

© IBM Researc h. Presen ted by David Ungar at Splash 2011 57

Wednesday, November 2, 11

Background

© IBM Research. Presented by David Ungar at Splash 2011 58

Wednesday, November 2, 11

Adding cells to our Cube

® Example: adding a new quarter of fish data
® Cells accessed by hash tables

® VWhat happens without sync!

© IBM Research. Presented by David Ungar at Splash 2011 59

bucket
array

contents contents

add JS—C

add JS—B

add Self SA+[gl |(elbAY) | JSIC| |APLGA [STB.

© IBM Research. Presented by David Ungar at Splash 2011 00

Wednesday, November 2, 11

add(assoc)

for (node = buckets[assoc->key->hash()];
node != NULL;
node = node->next)
if (nhode->contents->key == assoc->key)
return // already there!
new_node = new Node()
new_ node->contents = assocC
new_node->next = buckets[assoc->key->hash()]
buckets[assoc->key->hash()] = new_node

© IBM Researc h. Presen ted by David Ungar at Splash 2011 o1

Wednesday, November 2, 11

add(assoc)

for (node = buckets[assoc->key->hash()];
node != NULL;
node = node->next)
if (nhode->contents->key == assoc->key)
return // already there!
new_node = new Node()
new_ node->contents = assocC
new_node->next = buckets[assoc->key->hash()]
buckets[assoc->key->hash()] = new_node

© IBM Researc h. Presen ted by David Ungar at Splash 2011 o2

Wednesday, November 2, 11

add(assoc)

bp = &buckets[assoc->key->hash()]
for (node = *bp;

node != NULL;

node = node->next)

if (node->contents->key == assoc->key)
return // already there!

new_node = new Node()
new_ node->contents = assocC
new_node->next = *bp
*bp = new_node

© IBM Researc h. Presen ted by David Ungar at Splash 2011 03

Wednesday, November 2, 11

add(assoc)
bp = &buckets[assoc->key->hash()] W

<return if duplicate at *bp> return if duplicate in bucket

new_node = new Node()

make new node

new node->contents = assocC

new_node->next = *bp set new node next from bucket

*bp = new_node store new node into bucket

© IBM Research. Presented by David Ungar at Splash 2011 04

Wednesday, November 2, 11

Parallel Chaos

© IBM Research. Presented by David Ungar at Splash 2011 ote)

Wednesday, November 2, 11

Interleavings: one winner
Can miss an insertion

find bucket find bucket

return if duplicate in bucket return if duplicate in bucket

make new node make new node

set hew node next from bucket B set new node next from bucket

store new node into bucket

store new node into bucket

© IBM Researc h. Presen ted by David Ungar at Splash 2011 00

Wednesday, November 2, 11

Interleavings: two winners:
can add same key twice

s [N i b

return if duplicate in bucket return if duplicate in bucket

make new node make new node

set hew hode next from bucket

store new node into bucket

set hew hode next from bucket

store new node into bucket

© IBM Research. Presented by David Ungar at Splash 2011

Wednesday, November 2, 11

hovpng

Initial state

Aedu

SRR . e

N < " e a L aZey <
G ST " : g G hAES: o

P DTV LS JOR . PN

R R .

7] X

contents contents

add JS—C

Final state

e
o <3
B AT "
s L gi- .
R

© IBM Research. Presented by David Ungar at Splash 2011

Wednesday, November 2, 11

Bounding the error

© IBM Research. Presented by David Ungar at Splash 2011 09

Wednesday, November 2, 11

A simple fix, without

synchronization
bp = &buckets[assoc->key->hash()]
head = *bp

for (node = head; node != NULL;

node = node->next)
if (hode->contents->key == assoc->key)
return; // already there!
new_node = new Node();
new_node->contents = assoc;
new_node->next = head
*bp = new_node

/70

add(assoc)

bp = &buckets[assoc->key->hash()] m
read = bp

<return if duplicate at head> return if duplicate at head

new_node = new Node()
make new node
new_node->contents = assoc

new_node->next = head set new node next from head

>X<|I)|Z) — new_node store new node into bucket

© IBM Researc h. Presen ted by David Ungar at Splash 2011 71

Wednesday, November 2, 11

Cannot add same key twice!
Despite unsynchronized

find bucket find bucket

read head from bucket read head from bucket

return if duplicate‘at

return if duplicate 4t

make new node make new node

set new node next from head

store new node into bucket

set new node next from head

store new node into bucket

© IBM Researc h. Presen ted by David Ungar at Splash 2011 792

Wednesday, November 2, 11

Can still fail to insert different key

find bucket find bucket

read head from bucket read head from bucket

return if duplicate at head return if duplicate at head

make new node make new node

set nhew node next from head set nhew node next from head

store new node into bucket

store new node into bucket

© IBM Researc h. Presen ted by David Ungar at Splash 2011 73

Wednesday, November 2, 11

Mitigation
Strategies

© IBM Research. Presented by David Ungar at Splash 2011 74

Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Wednesday, November 2, 11

No check

make new node

find bucket

read head from bucket

return if duplicate at head
set nhew node next from head

store new node into

75

Compare-and-Swap

make new node

find bucket
read head from bucket K \
return if duplicate at head

set new node next from head

lock bucket

bucket = head?

store new hode into bucket
unlock bucket

unlock bucket

© IBM Research. F

Wednesday, November 2, 11

Check head before store

find bucket

read head from bucket nm \
return if duplicate at head

make new node

set new node next from head

yes

‘ bucket = head?
no

store new node into bucket

© IBM Researc h. Presen ted by David Ungar at Splash 2011 77

Wednesday, November 2, 11

Intention locks

AeJu v«}_j‘:,a>|3nq

ST—HE

-

contents contents

—)

Aeaue 0|
Aeu -.‘<;§j519>|3nq

S| b

-

=

contents contents

Put thread ID in lock when starting,
Check lock before/after store

© IBM Research. Presented by David Ungar at Splash 2011 78

Wednesday, November 2, 11

Intention lock check before

find bucket

make new node
write my thread ID in lock
read head from bucket \

return if duplicate at head

set new node next from head

o)

lock = my thread ID?

store new node into bucket

© IBM Researc h. Presen ted by David Ungar at Splash 2011 79

Wednesday, November 2, 11

Intention lock check after

find bucket

write my thread ID in lock
make new node \

read head from bucket

return if duplicate at head

set new node next from head

store new node into bucket

J

ﬁ nis h ed ' © IBM Research. Presented by David Ungar at Splash 2011

lock = my thread |D?

©l

Wednesday, November 2, 11

Mitigation Strategies

® Atomic instruction for storing head (lock-
free approach)

® Check bucket before storing head

® Check intention-lock before and/or after
store

® Just pass the buck to a higher level

Which would you choose!

31

The Experiment

© IBM Research. Presented by David Ungar at Splash 2011 82

Wednesday, November 2, 11

Experiments

® Platform: 8-core Mac

® Multicore, not manycore
® Varying # threads: |, 8
® Varying list strategies

® Varying experiments

© IBM Researc h. Presen ted by David Ungar at Splash 2011 83

Wednesday, November 2, 11

List strategies

® unchecked

® check list head

® check intention lock
® before
® after
® before & after

® compare-and-swap (CAS)

© IBM Research. Presented by David Ungar at Splash 2011 84

Wednesday, November 2, 11

Experiments

® no contention: each thread inserts into a
different list

® max contention: each thread inserts into
the same list

® max with retries: after each insert attempt:
® wait insert time, exit if insert succeeded

® if not, binary exponential backoff (<128)

© IBM Researc h. Presen ted by David Ungar at Splash 2011 85

Wednesday, November 2, 11

Results

© IBM Research. Presented by David Ungar at Splash 2011 86

Wednesday, November 2, 11

Disclaimer:
Unreviewed Work!!!
Contains errors

MIE IR =N

® Miss rate: how many insertion attempts fail

® NO contention: no misses

no contention
unchecked max contention
with retries

no contention
check-lock-before max contention [l Y
with retries

no contention
check-lock-after max contention
with retries

no contention
check-lock-bef/aft max contention
with retries

no contention

check-list-head max contention [N Y

with retries

no contention
CAS max contention | W
with retries

8-core Mac 0% 10% 20% 30% 40% 50% 60% 70% 80%

w

© IBM Research. Presented by David Ungar at Splash 2011 88

Wednesday, November 2, 11

Iterations:
How many times around the loop!?
(mean iterations per insert attempt)

8-core Mac Pro

unchecked | %
check-lock-before
check-lock-after
check-lock-bef/aft
check-list-head w
CAS *

I |0 100 1,000 10,000

iterations / insert attempt

© IBM Research. Presented by David Ungar at Splash 2011 89

Wednesday, November 2, 11

How much time per insert attempt!?
(Excluding duplicate-search time)
one thread

no contention
unchecked max contention
max w/ retries

no contention
check-lock-before max contention
max w/ retries

no contention
check-lock-after max contention
max w/ retries

no contention
check-lock-bef/aft max contention
max w/ retries

no contention
check-list-head max contention
max w/ retries

no contention
CAS max contention
max w/ retries

8-core Mac

100 1,000 10,000 100,000 1,000,000

© IBM Research. Presented by David Ungar at Splash 2011 90 ns

Wednesday, November 2, 11 90

How much time per insert attempt!?

(Excluding duplicate-search time)
8 threads

no contention
unchecked max contention
max w/ retries

no contention
check-lock-before max contention
max W/ retries

B R

no contention
check-lock-after max contention
max w/ retries

no contention
check-lock-bef/aft max contention
max w/ retries

no contention
check-list-head max contention
max w/ retries

).

no contention
CAS max contention
max w/ retries

*

8-core Mac
100 1,000 10,000 100,000 1,000,000

© IBM Research. Presented by David Ungar at Splash 2011 91 ns

Wednesday, November 2, 11

Miss rate vs time, 8-core Mac

1)
80% check lock after m Unchecked

70%

107

50%
40% check list head

miss rate

compare and swap

30%

pA

10%

)7 L]

600 900 1200 1500

insertion ns

one thread

© IBM Researc h. Presen ted by David Ungar at Splash 2011 92

Wednesday, November 2, 11

SUCCESSEeS SUCcessSes v attempts

ns attempt ns

unchecked

check-lock-before

check-lock-after

check-lock-bef/aft

check-list-head

CAS

0 150 300 450 600 750 900

successes / ms (bigger is better)

© IBM Rg;;gn.m:retligd by David Ungar at Splash 2011 (B ut O E!e th rea—d — 5 y 600)

Wednesday, November 2, 11

Summary: Parallel Sets

® Probabilistic data structures:
® New area!’

® Hypothesis: accuracy trades off against
performance

® CAS may not win

® Big penalty on current hardware

© IBM Research. Presented by David Ungar at Splash 2011 94

Wednesday, November 2, 11

An aside: freeing

cell set constraint set

constraint

constraint

Easy if you can count on the invariants

© IBM Research. Presented by David Ungar at Splash 2011 oe)

Wednesday, November 2, 11

An aside: freeing

cell set constraint set

constraint

constraint

Harder if you cannot count on the invariants

© IBM Research. Presented by David Ungar at Splash 2011 96

Wednesday, November 2, 11

Conclusion

® Hardware trends will force us to give up on
certainty, determinism, repeatability

® Good enough, soon enough, race-and-
repair, anti-lock

® A different way of thinking
® invariants become probable
® New data structures & algorithms

® Can we do it!?

© IBM Researc h. Presen ted by David Ungar at Splash 2011 97

Wednesday, November 2, 11

Acknowledgements

® [BM partners
® Sam Adams, Brent Hailpern, Doug Kimelman, Mark Wegman
® Academic partners
® Andrew Black, Stefan Marr, Theo D’Hondt
® |[nspiration
® Paul McKenney, Jonathan Walpole, Martin Rinard
o Talk help

® Misha Dmitriev, Peter Kessler, David Leibs, Randy Smith,
Michael Vandervanter, Mario Wolczko

© IBM Researc h. Presen ted by David Ungar at Splash 2011 o8

Wednesday, November 2, 11

