
© IBM Research. Presented by David Ungar at Splash 2011

Everything You Know
(about Parallel
Programming)

 Is Wrong!
A Wild Screed

about the Future

David Ungar
Sam Adams, Doug Kimelman, Mark Wegman

IBM Research
1© IBM Research. Presented by David Ungar at Splash 2011

1Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

How we got Smalltalk
• PARC living in the future with expensive but

fast hardware + graphics

• cycles for

• interpreter

• dynamic dispatch

• garbage collection

• small methods

• reusable collection classes

2
2Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

• Why?

• Continued demand to handle more data

• clock speed

• device density

• What?

• Much less (fast) memory per thread

• Spatial locality critical for performance

• Many (slower) cycles, all at the same time

Now, the future is manycore

3
3Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Fundamental Issues

performance correctness

4
4Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Amdahl’s law
1 core, 10 secs

essentially serial
parallelizable

10 cores
2 secs

∞ cores Exterminate!

> 1 sec

5

5Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Scaling
implies

Serial portion

implies

synchronization
6

6Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Synchronization is Bad

Sca
ling

Synchronization

Why can’t we eliminate synchronization
(in the programming paradigm)?

Too much ➔ slow
Too little ➔ errors

performance

7
7Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Fundamental Issues

performance correctness

8
8Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

RAM

CPU

DSK

I/O

DSKI/O NET

Core

RAM

Core

RAM

Core

RAM

Core

RAM

Core

RAM

Core

RAM

Core

RAM

Core

RAM

Core

RAM

Core

RAM

Core

RAM

Core

RAM

Core

RAM

Core

RAM

Core

RAM

Core

RAM

DSKI/O NET

Single Core
Simple

Multi-core (2-16)
Very complex

Many-core (100s)
Too complex

Yesterday Today Tomorrow

9
9Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Too hard to
get it right

when parallel

Cannot even try to
get it right

without synchronization
10

10Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

The future:
No sync at all

• “anti-lock”

• “race-and-repair”

• “end-to-end nondeterminism”

•Without synchronization:

•will not always get exact answers

11
11Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

performance correctness

Get it wrong,
quickly,
but still

right enough
12

12Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Fundamental trade-off?

performance correctness

13
13Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Ensembles &
Adverbs

Fresheners &
Breadcrumbs

nil

nil

APL➝A ST➝B
Locals &

Breadcrumbs

Mitigate,
Race,
Repair

Fundamental

14
14Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Romeo
and
Juliet

http://karenswhimsy.com/romeo-and-juliet.shtm

Spoiler alert!

15
15Wednesday, November 2, 11

http://karenswhimsy.com/romeo-and-juliet.shtm
http://karenswhimsy.com/romeo-and-juliet.shtm

© IBM Research. Presented by David Ungar at Splash 2011

Friar Lawrence hatches a plan
16

16Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Juliet fakes death with a
drug.

Friar John is sent to tell
Romeo

17
17Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

• John is delayed by quarantine

• Servant tells Romeo that Juliet is dead

• Romeo goes to tomb

• Romeo kills himself

• Friar Lawrence arrives with message to
Romeo

18
18Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Juliet wakes

to find a

dead Romeo

19
19Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Juliet kills herself
20

20Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

• Juliet feigns death to avoid marrying Paris

• Friar Lawrence sends Friar John to tell Romeo of
plan

• John is delayed by quarantine

• Servant tells Romeo that Juliet is dead

• Romeo goes to tomb

• Romeo kills himself

• Friar Lawrence arrives with message to Romeo

• Juliet wakes, sees Romeo dead, kills herself

Summary

21
21Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Friar JulietRomeo

fakes death

sends plan to R

hears of plan

goes to tomb

devises plan, gives J drug

awakens

R & J elopeThe original plan:
A happy ending

22
22Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Friar JulietRomeo

fakes death

sends plan to R

hears of death

kills himself

hears of plan

delay

devises plan, gives J drug

awakens

kills herself

sees R deadRace condition:
Incorrect result

goes to tomb

23
23Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Friar JulietRomeo

fakes death

sends plan to R

hears of death

waits

hears of plan

delay

devises plan, gives J drug

awakens

R & J elope
Waiting before side-effect:

Improves chances

goes to tomb

24
24Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Fundamental trade-off

performance correctness

25
25Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Other Ideas
(not really covered)

26
26Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

“Lock-Free” algorithms
• Critical section limited to atomic

instructions

• compare-and-swap

• lwarx & stwx

• Instruction may “fail” forcing a retry loop

• No waiting visible to programmer

• But atomic instructions implicitly
synchronize

➡ may not scale!
27

27Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Read-Copy Update
• Readers run concurrently with updaters

• Updaters update a copy if needed

• After all readers done, updaters serially swap-
in updated copy

• Handles removal

• Good lessons to learn

• Still pays synchronization costs, esp. for
updating: guaranteed to not miss updates

28
28Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Functional Programming

• Lack of side-effects hides many ordering
dependencies

• But, a poor match for modeling stateful
systems

• Functional composition: f(g(x))

• still induces ordering dependencies

➡ some synchronization required

29
29Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Other Deterministic
Programming Approaches

• Let the programmer specify dependencies

• System reorders and parallelizes execution

• Does not push programmer hard enough
to relinquish determinism

30
30Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Actors

• Determinism within an actor eases
programming task

• But, message arrival ordering still creates
need to deal with nondeterminism

31
31Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Other approaches

still cling to

correctness

32
32Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Root cause:
Our Attraction to Certainty
• Definite state

• x holds 17

• Definite order

• input ➔ process ➔ output

• serialized message queues

• Definite results

• 1 + 1 = 2

33
33Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Ensembles &
Adverbs

Fresheners &
Breadcrumbs

nil

nil

APL➝A ST➝B
Locals &

Breadcrumbs

Mitigate,
Race,
Repair

Fundamental

34
34Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Biology, not Math
Massive parallelism with state:

Many locally (re)acting individuals

Surprisingly complex overall behavior

Emergence
35

35Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Birds don’t need π calculus

Separation: steer to avoid
crowding local flockmates

Alignment: steer towards the
average heading of local
flockmates

Cohesion: steer to move toward
the average position of local
flockmate

Craig Reynods, 1986, Boids
(Flocks, Herds, and Schools: a Distributed Behavioral Model) 36

36Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011 37

No app-level

50 SlyBoids, 50 Tilera cores

© IBM Research. Presented by David Ungar at Splash 2011

37Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Ensemble
One & Many

Parallel activities

Unsynchronized

38
38Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Idea:
Separate how from what (and who);

factor out the strategy:
subject + verb + adverb

receiver.selector(argument --modifier)

Ensemble computation varies from

execution strategies
Independent

& Parallel
Dependent

 & Serial

result handling strategies
Ensemble
of results

Reduced to a
Single Object

39
39Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Ensembles &
Adverbs

Fresheners &
Breadcrumbs

nil

nil

APL➝A ST➝B
Locals &

Breadcrumbs

Mitigate,
Race,
Repair

Fundamental

40
40Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

What’s a cube?
(OLAP = Online Analytical Processing)

• To a first approximation: It’s a
multidimensional spreadsheet

41
41Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Our OLAP Cubes’
Features

• In-memory – to be practical for interactive
update / recalculate

• Not represented by a standard Relational
Database, thus MOLAP

• Write-back – users update values e.g. for
financial forecasting / budgeting

• Concurrent – up to 100’s or 1000’s of users

42
42Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Users Want Scalability

• Budget deadlines, 1000’s of users, some
doing vast queries, many others doing
detailed entry and review

• Scaling / Performance wall (long running
reads, serializing writes)

• Readers-writer lock contention

43
43Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Data cells linked by
one-way constraints
• Could be any (acyclic) shape

• “Entered Cells” = user types in data

• “Computed Cells” = hold sums, etc.

• Aggregates & Formulae results

• Computed on demand

• Cache results for performance

44
44Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

2010 Q1,
cod,

unitPrice:
2

2010 Q1,
cod,

quantity:
10

2010 Q1,
tuna,

unitPrice:
3

2010 Q1,
tuna,

quantity:
15

2010 Q2,
cod,

unitPrice:
2

2010 Q2,
cod,

quantity:
10

2010 Q2,
tuna,

unitPrice:
3

2010 Q2,
tuna,

quantity:
15

entered cells

2010 Q1,
cod,
cost:
×

2010,
tuna,

quantity:
+

all,
all,

quantity:
+ + +

computed cells

45

45Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

2010 Q1,
cod,

unitPrice:
2

2010 Q1,
cod,

quantity:
10

2010 Q1,
cod,
cost:

nil

Naive Caching
tim

e
0A. unitPrice = 2, quantity = 10
1A. Alice requests cost
2A. Alice sees empty cache
3A. value calculated is 20
4A. 20 is cached to
save recalculation

1B. Bob changes unitPrice,
 invalidates cache

1C. Cathy requests cost
2C. Cathy sees empty cache
3C. Cost recalculated & cached

Works when serial
Fails when concurrent

20

3

30

4C. Cathy gets fresh cost

46
46Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011 47

ca
lc

ul
at

in
g

Naive caching fails:
leaves stale result cached forever

tim
e

0A. unitPrice = 2

1A. Alice requests cost value

2A. calculation commences

3A. calculation finishes,
stores wrong value in cache

1C. Cathy requests cost,
reads wrong value from cache

1D. Dan requests cost,
reads wrong value from cache

1E. Elly May requests cost,
reads wrong value from cache

1B. Bob changes unitPrice to 10

2B. cost cache is invalidated

47Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011 48

w
ai

tin
g

Naive parallel solution:
lock allows N readers OR one writer

tim
e

0A. unitPrice = 2

1A. Alice requests cost value, gains lock

2A. calculation commences

3A. calculation finishes,
stores iffy value in cache
releases lock

1C. Cathy requests cost,
gets lock, sees empty cache,
recalculates & caches,
reads right value from cache
releases lock

2B. Bob gets lock,
changes unitPrice,
invalidates cost cache,
releases lock

1B. Bob tries to change unitPrice,
has to wait for lock

ca
lc

ul
at

in
g

48Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011 49

ca
lc

ul
at

in
g

Asynchronous freshener
eventually fixes error

without locking

tim
e

“race and repair”

0A. unitPrice = 2

1A. Alice requests cost value

2A. calculation commences

3A. calculation finishes,
stores wrong value in cache

1C. Cathy requests cost,
reads wrong value from cache

1D. Dan requests cost,
reads right value from cache

1E. Elly May requests cost,
reads right value from cache

1B. Bob changes unitPrice to 10

2B. cost cache is invalidated

1F. Freshener recalculates cost cell, caching result

49Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011 50

ca
lc

ul
at

in
g

Breadcrumbs: Avoid caching
(some) stale results

Mitigate nondeterminism

tim
e

2A. Alice drops her breadcrumb

3A. calculation commences

4A. calculation finishes

1C. Charles requests cost,
cache is empty, recalculates and caches right result

1D. Doris requests cost,
reads right value from cache

1E. Ephraim requests cost,
reads right value from cache

1B. Bob changes unitPrice to 10

2B. cost cache is invalidated

1A. Alice requests cost value

5A. Alice picks up Bob’s breadcrumb,
aborts cache store, gets reasonable result

Imperfect
Many variations

3B. Bob drops his breadcrumb

50Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

0
5,000

10,000
15,000
20,000
25,000
30,000

0 10 20 30 40 50 60

Scaling on Tilera

op
er

at
io

ns
 c

om
pl

et
ed

cores

likely Smalltalk
Virtual Machine

limit

Smalltalk version

0
50,000

100,000
150,000
200,000
250,000
300,000

0 1 2 3 4 5 6 7

Scaling on Mac

op
er

at
io

ns
 c

om
pl

et
ed

cores

w/ sync

no sync

w/ sync

no sync

Synchronization
prevents scaling

51
51Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

0%
1%
2%
3%
5%
6%
7%
8%

2 10 18 26 34 42 50 58

Staleness creation on Tilera

st
al

e
ca

ch
in

g
fre

qu
en

cy

worker threads

0%
1%
2%
3%
4%
5%
6%
7%
8%

2 3 4 5 6 7 8

Staleness creation on Mac

st
al

e
ca

ch
in

g
fre

qu
en

cy

worker threads

600 cell Fish Market, Smalltalk model

without breadcrumbs

without breadcrumbs

with breadcrumbs

with breadcrumbs

Reducing incidence of
staleness without sync

52
52Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

0%

5%

10%

15%

20%

25%

30%

0% 25% 50% 75% 100%
st

al
e

qu
er

y
fre

q.

pct. freshener time

0%

5%

10%

15%

20%

25%

30%

0% 25% 50% 75% 100%

st
al

e
qu

er
y

fre
q.

pct. freshener time

1 year Fish Market, Smalltalk model

Mac:
always use 8 cores
0 to 7 fresheners

8 down to 1 workers

Tilera:
always use 16 cores
0 to 14 fresheners

16 down to 2 workers

Example:
With one freshener per worker, < 20% of results

were stale

Invalidation + Breadcrumbs
+ Round-Robin Fresheners

53
53Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

0

20

40

60

0% 25% 50% 75% 100%

m
ax

pct. freshener time

0

20

40

60

0% 25% 50% 75% 100%

m
ax

pct. freshener time

0
2
4
6
8

10

0% 25% 50% 75% 100%

90
%

-il
e

0
5

10
15
20

0% 25% 50% 75% 100%

90
%

-il
e

0
1
2
3
4

0% 25% 50% 75% 100%

m
ed

ia
n

0
1
2
3
4

0% 25% 50% 75% 100%

m
ed

ia
n

1
ye

ar
 F

is
h

M
ar

ke
t,

Sm
al

lta
lk

 m
od

el

 at 1 freshener per 1
worker,

90% of the stale
results are < 8 query

times stale.

Mac:
always use 8 cores
0 to 7 fresheners

8 down to 1 workers

Tilera:
always use 16 cores
0 to 14 fresheners

16 down to 2 workers

How stale?

54
54Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

How often & how stale?

0

2

4

6

8

10

0% 25% 50% 75% 100%

90
%

-il
e

 at 1 freshener per 1 worker,
90% of the stale results are < 8

query times stale

0%

5%

10%

15%

20%

25%

30%

0% 25% 50% 75% 100%

st
al

e
qu

er
y

fre
q.

pct. freshener time

Tilera: using 16 cores, 0 – 14 fresheners, 16 – 2 workers16 down to 2 workers

With one freshener per worker,
< 20% of results were stale

So, only 2% of all queries
return results staler than 8.

55
55Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Summary: Fresheners

• Instead of synchronizing cache invalidation with
recomputation, allow data race errors

• Freshen possibly-stale caches in parallel

• < 2% queries staler than 8 query times

• Race & Repair: Antilock Computing

Embrace and manage inconsistency to
enable scaling

Inconsistency Robustness for Scalability in
Interactive Concurrent-Update In-Memory

MOLAP Cubes,
with Kimelman & Adams

56
56Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Ensembles &
Adverbs

Fresheners &
Breadcrumbs

nil

nil

APL➝A ST➝B
Locals &

Breadcrumbs

Mitigate,
Race,
Repair

Fundamental

57
57Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Background

58
58Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Adding cells to our Cube

• Example: adding a new quarter of fish data

• Cells accessed by hash tables

• What happens without sync?

59
59Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

nil

nil APL➝A ST➝B

bucket
array

next

contents

next

contents

nil APL➝A ST➝BJS➝C

nil APL➝A ST➝BJS➝C

nil

nil

nil APL➝A ST➝BJS➝C

nil

(Self, A+)

Initial state

add JS➝C

add JS➝B

add Self➝A+

60
60Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

for (node = buckets[assoc->key->hash()];
 node != NULL;
 node = node->next)
 if (node->contents->key == assoc->key)
 return // already there!
new_node = new Node()
new_node->contents = assoc
new_node->next = buckets[assoc->key->hash()]
buckets[assoc->key->hash()] = new_node

add(assoc)

61
61Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

for (node = buckets[assoc->key->hash()];
 node != NULL;
 node = node->next)
 if (node->contents->key == assoc->key)
 return // already there!
new_node = new Node()
new_node->contents = assoc
new_node->next = buckets[assoc->key->hash()]
buckets[assoc->key->hash()] = new_node

add(assoc)

62
62Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

bp = &buckets[assoc->key->hash()]
for (node = *bp;
 node != NULL;
 node = node->next)
 if (node->contents->key == assoc->key)
 return // already there!
new_node = new Node()
new_node->contents = assoc
new_node->next = *bp
*bp = new_node

add(assoc)

63
63Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

bp = &buckets[assoc->key->hash()]

<return if duplicate at *bp>

new_node = new Node()

new_node->contents = assoc

new_node->next = *bp

*bp = new_node

add(assoc)
find bucket

return if duplicate in bucket

make new node

set new node next from bucket

store new node into bucket

64
64Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Parallel Chaos

65
65Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Interleavings: one winner
Can miss an insertion
find bucket

return if duplicate in bucket

make new node

set new node next from bucket

store new node into bucket

find bucket

return if duplicate in bucket

make new node

set new node next from bucket

store new node into bucket

66
66Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Interleavings: two winners:
can add same key twice

find bucket

return if duplicate in bucket

make new node

set new node next from bucket

store new node into bucket

find bucket

return if duplicate in bucket

make new node

set new node next from bucket

store new node into bucket
67

67Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

nil

nil APL➝A ST➝B

bucket array

next

contents

next

contents

Initial state

nil APL➝A ST➝BJS➝C

nil APL➝A ST➝BJS➝B

nil

nil

add JS➝C

add JS➝B

while

nil APL➝A ST➝BJS➝C

nil

JS➝BFinal state

68
68Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Bounding the error

69
69Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

A simple fix, without
synchronization

bp = &buckets[assoc->key->hash()]
head = *bp
for (node = head; node != NULL;
 node = node->next)
 if (node->contents->key == assoc->key)
 return; // already there!
new_node = new Node();
new_node->contents = assoc;
new_node->next = head
*bp = new_node

70
70Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

bp = &buckets[assoc->key->hash()]

head = *bp

<return if duplicate at head>

new_node = new Node()

new_node->contents = assoc

new_node->next = head

*bp = new_node

add(assoc)

read head from bucket

return if duplicate at head

make new node

set new node next from head

store new node into bucket

find bucket

71
71Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Cannot add same key twice!
Despite unsynchronized

read head from bucket

return if duplicate at head

make new node

set new node next from head

store new node into bucket

find bucket

read head from bucket

return if duplicate at head

make new node

set new node next from head

store new node into bucket

find bucket

72
72Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Can still fail to insert different key

read head from bucket

return if duplicate at head

make new node

set new node next from head

store new node into bucket

find bucket

read head from bucket

return if duplicate at head

make new node

set new node next from head

store new node into bucket

find bucket

73
73Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Mitigation
Strategies

74
74Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

No check

store new node into

read head from bucket

return if duplicate at head

make new node

set new node next from head

find bucket

75
75Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Compare-and-Swap

store new node into bucket

read head from bucket

return if duplicate at head

make new node

set new node next from head

lock bucket

find bucket

bucket = head?

unlock bucket

unlock bucket

yes
no

all in one instruction
76

76Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Check head before store

store new node into bucket

read head from bucket

return if duplicate at head

make new node

set new node next from head

find bucket

bucket = head?
yes

no

77
77Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Intention locks
nil

nil APL➝A ST➝B

bucket array

next

contents

next

contents

nil

nil APL➝A ST➝B

bucket array

next

contents

next

contents

lock array

Put thread ID in lock when starting,
Check lock before/after store

78
78Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Intention lock check before

store new node into bucket

write my thread ID in lock

read head from bucket

return if duplicate at head

set new node next from head

make new node

lock = my thread ID?

yes
no

find bucket

79
79Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Intention lock check after

finished!

make new node

read head from bucket

return if duplicate at head

set new node next from head

write my thread ID in lock

lock = my thread ID?
yes no

find bucket

store new node into bucket

80 © IBM Research. Presented by David Ungar at Splash 2011

80Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Mitigation Strategies
• Atomic instruction for storing head (lock-

free approach)

• Check bucket before storing head

• Check intention-lock before and/or after
store

• Just pass the buck to a higher level

Which would you choose?
81

81Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

The Experiment

82
82Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Experiments

• Platform: 8-core Mac

• Multicore, not manycore

• Varying # threads: 1, 8

• Varying list strategies

• Varying experiments

83
83Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

List strategies

• unchecked

• check list head

• check intention lock

• before

• after

• before & after

• compare-and-swap (CAS)

84
84Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Experiments

• no contention: each thread inserts into a
different list

• max contention: each thread inserts into
the same list

• max with retries: after each insert attempt:

• wait insert time, exit if insert succeeded

• if not, binary exponential backoff (<128)

85
85Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Results

86
86Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Disclaimer:
Unreviewed Work!!!

Contains errors

87
87Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Miss rate results
• Miss rate: how many insertion attempts fail

• no contention: no misses

 unchecked

 check-lock-before

 check-lock-after

 check-lock-bef/aft

 check-list-head

 CAS

no contention
max contention

with retries
no contention

max contention
with retries

no contention
max contention

with retries
no contention

max contention
with retries

no contention
max contention

with retries
no contention

max contention
with retries

0% 10% 20% 30% 40% 50% 60% 70% 80%8-core Mac

88
88Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Iterations:
How many times around the loop?

(mean iterations per insert attempt)
8-core Mac Pro

 unchecked
 check-lock-before

 check-lock-after
 check-lock-bef/aft

 check-list-head
 CAS

1 10 100 1,000 10,000

iterations / insert attempt
89

89Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

How much time per insert attempt?
(Excluding duplicate-search time)

one thread
 unchecked

 check-lock-before

 check-lock-after

 check-lock-bef/aft

 check-list-head

 CAS

no contention
max contention
max w/ retries
no contention

max contention
max w/ retries
no contention

max contention
max w/ retries
no contention

max contention
max w/ retries
no contention

max contention
max w/ retries
no contention

max contention
max w/ retries

100 1,000 10,000 100,000 1,000,000
ns

8-core Mac

90
90Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

How much time per insert attempt?
(Excluding duplicate-search time)

8 threads
 unchecked

 check-lock-before

 check-lock-after

 check-lock-bef/aft

 check-list-head

 CAS

no contention
max contention
max w/ retries
no contention

max contention
max w/ retries
no contention

max contention
max w/ retries
no contention

max contention
max w/ retries
no contention

max contention
max w/ retries
no contention

max contention
max w/ retries

100 1,000 10,000 100,000 1,000,000
ns

8-core Mac

91
91Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 300 600 900 1200 1500

m
is

s
ra

te

insertion ns

Miss rate vs time, 8-core Mac

check lock after

check list head compare and swap

unchecked

one thread

concurrency

penalty

92
92Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

 unchecked

 check-lock-before

 check-lock-after

 check-lock-bef/aft

 check-list-head

 CAS

0 150 300 450 600 750 900

successes / ms (bigger is better)
8-core Mac (But one thread = 5,600)

successes
ms

= successes
attempt

× attempts
ms

93
93Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Summary: Parallel Sets

• Probabilistic data structures:

• New area?

• Hypothesis: accuracy trades off against
performance

• CAS may not win

• Big penalty on current hardware

94
94Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

An aside: freeing

cell constraint

constraint

constraint

cell

cell

cell

Easy if you can count on the invariants

cell set constraint set

95
95Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

An aside: freeing

cell constraint

constraint

constraint

cell

cell

cell

Harder if you cannot count on the invariants

cell set constraint set

96
96Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Conclusion
• Hardware trends will force us to give up on

certainty, determinism, repeatability

• Good enough, soon enough, race-and-
repair, anti-lock

• A different way of thinking

• invariants become probable

• New data structures & algorithms

• Can we do it?

97
97Wednesday, November 2, 11

© IBM Research. Presented by David Ungar at Splash 2011

Acknowledgements
• IBM partners

• Sam Adams, Brent Hailpern, Doug Kimelman, Mark Wegman

• Academic partners

• Andrew Black, Stefan Marr, Theo D’Hondt

• Inspiration

• Paul McKenney, Jonathan Walpole, Martin Rinard

• Talk help

• Misha Dmitriev, Peter Kessler, David Leibs, Randy Smith,
Michael Vandervanter, Mario Wolczko

98
98Wednesday, November 2, 11

