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How we got Smalltalk

® PARC living in the future with expensive but
fast hardware + graphics

® cycles for
® interpreter
® dynamic dispatch
® garbage collection
® small methods

® reusable collection classes
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Now, the future is manycore
o Why!?

® Continued demand to handle more data

® clock speed -
® device density-

® VWhat!

® Much less (fast) memory per thread
® Spatial locality critical for performance

® Many (slower) cycles, all at the same time
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Fundamental Issues




Amdahl’s law

| core, |10 secs

|0 cores 00 cores
2 secs > | sec
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Scaling
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Synchronization is Bad

performance

Too much = slow
Too little = errors

Why can’t we eliminate synchronization
(in the programming paradigm)?

/




Fundamental Issues




Many-core (100s)

Multi-core (2-16) Too complex

Single Core Very complex
Simple
Yesterday Today Tomorrow
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Too hard to
get it right
when parallel

Cannot even try to
get it right
without synchronization

10




The future:
No sync at all

® “anti-lock”

® “race-and-repair”

® “end-to-end nondeterminism”
® Without synchronization:

® will not always get exact answers
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Get it wrong,
quickly,
but still

right enough




Fundamental trade-off!

yerformance correctness
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Juliet

Spoiler alert!

http://karenswhimsy.com/romeo-and-juliet.shtm
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http://karenswhimsy.com/romeo-and-juliet.shtm
http://karenswhimsy.com/romeo-and-juliet.shtm

Friar Lawrence hatches a plan
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® John is delayed by quarantine

® Servant tells Romeo that Juliet is dead
® Romeo goes to tomb

® Romeo kills himself

® Friar Lawrence arrives with message to
Romeo
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Juliet kills herself
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Summary

® |uliet feigns death to avoid marrying Paris

® Friar Lawrence sends Friar John to tell Romeo of
plan

® John is delayed by quarantine

® Servant tells Romeo that Juliet is dead

® Romeo goes to tomb

® Romeo kills himself

® Friar Lawrence arrives with message to Romeo

® Juliet wakes, sees Romeo dead, kills herself
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Romeo Juliet

fakes death

hears of plan

goes to tomb

4

awakens

The original plan:
A happy ending
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Friar Romeo Juliet

fakes death

hears of death

goes to tomb

kills himself

hears of plan
4

awakens

Race condition: sees R dead
Incorrect result ills herself
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Friar Romeo Juliet

fakes death

hears of death

hears of plan

goes to tomb

awaens
Wiaiting before side-effec

Improves chances

© IBM Researc h. Presen ted by David Ungar at Splash 2011 24

Wednesday, November 2, 11



Fundamental trade-off

yerformance correctness
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Other Ideas
(not really covered)




“Lock-Free” algorithms

® Critical section limited to atomic
Instructions

® compare-and-swap

® |warx & stwx
® |nstruction may “fail” forcing a retry loop
® No waiting visible to programmer

® But atomic instructions implicitly
synchronize

= may not scale!
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Read-Copy Update

Readers run concurrently with updaters
Updaters update a copy if needed

After all readers done, updaters serially swap-
in updated copy

Handles removal

Good lessons to learn

Still pays synchronization costs, esp. for
updating: guaranteed to not miss updates
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Functional Programming

® | ack of side-effects hides many ordering
dependencies

® But,a poor match for modeling stateful
systems

® Functional composition: f(g(x))
® still induces ordering dependencies

=» some synchronization required
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Other Deterministic
Programming Approaches

® | et the programmer specify dependencies
® System reorders and parallelizes execution

® Does not push programmer hard enough
to relinquish determinism

© IBM Research. Presented by David Ungar at Splash 2011 10




Actors

® Determinism within an actor eases
programming task

® But, message arrival ordering still creates
need to deal with nondeterminism
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Other approaches
still cling to

correctness




Root cause:
Our Attraction to Certainty

® Definite state
® x holds |7
® Definite order
® input => process = output
® serialized message queues
® Definite results
o |+ ]| =2
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Biology, not Math

Massive parallelism with state:

Many locally (re)acting individuals

Surprisingly complex overall behavior

Emergence

© IBM Research. Presented by David Ungar at Splash 2011 35

Wednesday, November 2, 11



Birds don’t need 1T calculus

Separation: steer to av@j{d
crowding local flockm3dt&s:

Alignment: steer towarddSliE
average heading of locdl
flockmates

the average position offiota
flockmate

Craig Reynods, 1986, Boids
o 1Bk RESRnPREDR AN DxeRARYS: 2 Sisti Ry fed Behavioral Model) 3¢
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50 SlyBoids, 50 Tilera cores




rarallz2] serjyicias
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Ensemble computation varies from

Independent Dependent
& Parallel & Serial
Ensemble Reduced to a
of results Single Object

|dea:

Separate how from what (and who);
factor out the strategy:
subject + verb + adverb

receiver.selector(argument --modifier)
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Fundamental /°

-nsembles &
Adverpbs

Fresheners
Breadcrum

Mitigate, /"

Race, ~_

Repair ™ Locals &
Breadcrumbs
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What’s a cube!

(OLAP = Online Analytical Processing)

® TJo a first approximation: It’s a
multidimensional spreadsheet
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Our OLAP Cubes’
Features

® |nh-memory — to be practical for interactive
update / recalculate

® Not represented by a standard Relational
Database, thus MOLAP

® Write-back — users update values e.g. for
financial forecasting / budgeting

® Concurrent — up to 100’s or 1000’s of users

© IBM Research. Presented by David Ungar at Splash 2011 492




Users VWant Scalability

® Budget deadlines, 1000’s of users, some
doing vast queries, many others doing
detailed entry and review

® Scaling / Performance wall (long running
reads, serializing writes)

® Readers-writer lock contention
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Data cells linked by
onhe-way constraints

® Could be any (acyclic) shape
® “Entered Cells” = user types in data
® “Computed Cells” = hold sums, etc.
® Aggregates & Formulae results
® Computed on demand

® Cache results for performance
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entered cells

2010 Q2,
tuna,
quantity:
15

computed cells

© IBM Research. Presented by David Ungar at Splash 2011
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2010 Q1, 12010 Q1, || 2010 Q1, || 2010 Q1, 2010 Q2, || 2010 Q2, || 2010 Q2,
cod, cod, tuna, tuna, cod, cod, tuna,
unitPrice: || quantity: || unitPrice: || quantity: unitPrice: || quantity: || unitPrice:
2 10 3 15 2 10 3

2(0] [ON@RE 2010 al.
od, tUnA, al
ost: qugntity: quaniity:
X + + ¥+




Nalve CaChlﬂg 2010 Q1, || 2010 Q1,

cod, cod,

OA. unitPrice = 2, quantity = 10 unitPrice: || quantity:

. 3 10
1A. Alice requests cost
2A. Alice sees empty cache N f

A. value calculated is 2
3 © edis 20 2010 QT,
4A. 20 is cached to _ cod,
save recalculation cost:
30
1B. Bob changes unitPfice,

invalidates cache

time

1C. Cathy requests cost
2C. Cathy sees empty cache

3C. Cost recalculated & cached
4C. Cathy gets fresh cost

Works when serial
Fails when concurrent
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Naive caching fails:
OA. unitPrice = 2 leaves stale result cached forever

1A. Alice requests cost value

2A. calculation commences

1B. Bob changes unitPrice to 10

2B. cost cache is invalidated

b0
=
4=
K
>
o
S
¥

3A. calculation finishes,
stores wrong value in cache

time

1C. Cathy requests cost,
reads wrong value from cache

1D. Dan requests cost,
reads wrong value from cache

1E. Elly May requests cost,
reads wrong value from cache
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Naive parallel solution:
lock allows N readers OR one writer
OA. unitPrice =2
1A. Alice requests cost value, gains lock

2A. calculation commences

1B. Bob tries to change unitPrice,
has to wait for lock

3A. calculation finishes,
stores iffy value in cache
releases lock

time

2B. Bob gets lock,
changes unitPrice,
Invalidates cost cache,
releases lock

1C. Cathy requests cost,
gets lock, sees empty cache,
recalculates & caches,
reads right value from cache
releases lock
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time

Asynchronous freshener
OA. unitPrice = 2 eventually fixes error
1A. Alice requests cost value WithQut Iocking

2A. calculation commences

1B. Bob changes unitPrice to 10

2B. cost cache is invalidated

00
.E
fw)
L"
-
L
(v
o

3A. calculation finishes,

stores wrong value in cache

¢¢ e 99
1C. Cathy requests cost, race and repalr

reads wrong value from cache

1F. Freshener recalculates cost cell, caching result

1D. Dan requests cost,
reads right value from cache

1E. Elly May requests cost,
reads right value from cache
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time

Breadcrumbs: Avoid caching
1A. Alice requests cost value (some) stale results
2A. Alice drops her breadcrumb Mitigate nondeterminism

3A. calculation commences

1B. Bob changes unitPrice to 10

2B. cost cache is invalidated

00
-
fw
Ky
=
-
(4!
O

3B. Bob drops his breadcrumb

4A. calculation finishes

5A. Alice picks up Bob’s breadcrumb,
aborts cache store, gets reasonable result

1C. Charles requests cost,
cache is empty, recalculates and caches right result

1D. Doris requests cost,
reads right value from cache

ImPerfeCt 1E. Ephraim requests cost,
Many var’iations reads right value from cache
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Synchronization
prevents scaling

Scaling on Mac

300,000
250,000
200,000
150,000
100,000

50,000

Smalltalk version

no sync

operations completed

0 1 2 3 4 5 6 7 likely Smalltalk

# cores Scaling on Tilera Virtual Machine

30,000 limit
25,000
20,000
15,000
10,000
5,000

operations completed

0 10 20 30 40 50 60

# cores
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Reducing incidence of
staleness without sync

Staleness creation on Mac Staleness creation on Tilera
8%
7%
6%
5%
4%
3%
2% |
1% &
0%

stale caching frequency

5 3 4 5 6 7 8 2 10 18 26 34 42 50 58

# worker threads # worker threads

600 cell Fish Market, Smalltalk model
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Invalidation + Breadcrumbs
+ Round-Robin Fresheners

| year Fish Market, Smalltalk model

Mac: Tilera:
always use 8 cores always use 16 cores
O to 7 fresheners O to 14 fresheners
8 down to 1 workers 16 down to 2 workers

10%

stale query freq.
stale query freq.
o
X

75% 100%

pct. freshener time

0% 25% 50% 75% 100% 0% o 50%

pct. freshener time

Example:
With one freshener per worker, < 20% of results
were stale

© IBM Researc h. Presen ted by David Ungar at Splash 2011
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How stale!?

Mac: Tilera:
always use 8 cores always use 16 cores
0 to 7 fresheners 0 to 14 fresheners
8 down to 1 workers 16 down to 2 workers

0
O
o)
S
= 0% 25% 50% 75% 100%
S 0% 25% 50% 75% 100% o 25% 50% 75% 0
= 20 10 at 1 freshener per 1
UE) ° 15 PR worker,
5 % 10 L 2 90% of the stale
=Y
S5 5 S results are < 8 query
> 0 0 times stale.
< 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
L 6o
[ .
o
> . 40
— £

20

0

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
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How often & how stale?

Tilera: using 16 cores, 0 — 14 fresheners, 16 — 2 workers16 down to 2 workers

30%

. 25%

8
£ 20% .

- 150, With one freshener per worker,
3 < 20% of results were stale
% 10%
17

5%
0%

v

0% 25% 50% 75% 100% 90, only 2% of all queries
pct. freshener time return results staler than 8.

10
8 +
2 6
© at 1 freshener per 1 worker,
s 4 90% of the stale results are < 8
5 query times stale
0
0% 25% 50% 75% 100%
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Summary: Fresheners

® |[nstead of synchronizing cache invalidation with
recomputation, allow data race errors

® Freshen possibly-stale caches in parallel
® < 2% queries staler than 8 query times

® Race & Repair: Antilock Computing

Embrace and manage inconsistency to
enable scaling

Inconsistency Robustness for Scalability in
Interactive Concurrent-Update In-Memory

MOLAP Cubes,

with Kimelman & Adams
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Fundamental /"

-nsembles &
Adverpbs

—resheners &
Breadcrumbs

Mitigate,
Race,
Repalr - ~ Locals &

Breadcrumbs

© IBM Researc h. Presen ted by David Ungar at Splash 2011 57

Wednesday, November 2, 11



Background
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Adding cells to our Cube

® Example: adding a new quarter of fish data
® Cells accessed by hash tables

® VWhat happens without sync!
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bucket
array

contents contents

add JS—C

add JS—B

add Self SA+[ gl |(elbAY) | JSIC| |APLGA  [STB.
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add(assoc)

for ( node = buckets[assoc->key->hash()];
node != NULL;
node = node->next)
if (nhode->contents->key == assoc->key)
return // already there!
new_node = new Node()
new_ node->contents = assocC
new_node->next = buckets[assoc->key->hash()]
buckets[assoc->key->hash()] = new_node

© IBM Researc h. Presen ted by David Ungar at Splash 2011 o1
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add(assoc)

for ( node = buckets[assoc->key->hash()];
node != NULL;
node = node->next)
if (nhode->contents->key == assoc->key)
return // already there!
new_node = new Node()
new_ node->contents = assocC
new_node->next = buckets[assoc->key->hash()]
buckets[assoc->key->hash()] = new_node
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add(assoc)

bp = &buckets[assoc->key->hash()]
for ( node = *bp;

node != NULL;

node = node->next)

if (node->contents->key == assoc->key)
return // already there!

new_node = new Node()
new_ node->contents = assocC
new_node->next = *bp
*bp = new_node

© IBM Researc h. Presen ted by David Ungar at Splash 2011 03

Wednesday, November 2, 11



add(assoc)
bp = &buckets[assoc->key->hash()] W

<return if duplicate at *bp> return if duplicate in bucket

new_node = new Node()

make new node

new node->contents = assocC

new_node->next = *bp set new node next from bucket

*bp = new_node store new node into bucket

© IBM Research. Presented by David Ungar at Splash 2011 04
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Parallel Chaos
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Interleavings: one winner
Can miss an insertion

find bucket find bucket

return if duplicate in bucket return if duplicate in bucket

make new node make new node

set hew node next from bucket B set new node next from bucket

store new node into bucket

store new node into bucket

© IBM Researc h. Presen ted by David Ungar at Splash 2011 00
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Interleavings: two winners:
can add same key twice

s [N i b

return if duplicate in bucket return if duplicate in bucket

make new node make new node

set hew hode next from bucket

store new node into bucket

set hew hode next from bucket

store new node into bucket

© IBM Research. Presented by David Ungar at Splash 2011
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Initial state
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7] X

contents contents

add JS—C

Final state

e
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B AT "
s L gi- .
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Bounding the error
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A simple fix, without

synchronization
bp = &buckets[assoc->key->hash()]
head = *bp

for ( node = head; node != NULL;

node = node->next)
if (hode->contents->key == assoc->key)
return; // already there!
new_node = new Node();
new_node->contents = assoc;
new_node->next = head
*bp = new_node

/70




add(assoc)

bp = &buckets[assoc->key->hash()] m
read = bp

<return if duplicate at head> return if duplicate at head

new_node = new Node()
make new node
new_node->contents = assoc

new_node->next = head set new node next from head

>X<|I)|Z) — new_node store new node into bucket
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Cannot add same key twice!
Despite unsynchronized

find bucket find bucket

read head from bucket read head from bucket

return if duplicate‘at

return if duplicate 4t

make new node make new node

set new node next from head

store new node into bucket

set new node next from head

store new node into bucket

© IBM Researc h. Presen ted by David Ungar at Splash 2011 792
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Can still fail to insert different key

find bucket find bucket

read head from bucket read head from bucket

return if duplicate at head return if duplicate at head

make new node make new node

set nhew node next from head set nhew node next from head

store new node into bucket

store new node into bucket
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Mitigation
Strategies

© IBM Research. Presented by David Ungar at Splash 2011 74

Wednesday, November 2, 11



© IBM Research. Presented by David Ungar at Splash 2011
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No check

make new node

find bucket

read head from bucket

return if duplicate at head
set nhew node next from head

store new node into

75



Compare-and-Swap

make new node

find bucket
read head from bucket K \
return if duplicate at head

set new node next from head

lock bucket

bucket = head?

store new hode into bucket
unlock bucket

unlock bucket

© IBM Research. F
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Check head before store

find bucket

read head from bucket nm \
return if duplicate at head

make new node

set new node next from head

yes

‘ bucket = head?
no

store new node into bucket

© IBM Researc h. Presen ted by David Ungar at Splash 2011 77
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Intention locks

AeJu v«}_j‘:,a>|3nq

ST—HE

-

contents contents

—)

Aeaue 0|
Aeu -.‘<;§j519>|3nq

S| b

-

=

contents contents

Put thread ID in lock when starting,
Check lock before/after store
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Intention lock check before

find bucket

make new node
write my thread ID in lock
read head from bucket \

return if duplicate at head

set new node next from head

o )

lock = my thread ID?

store new node into bucket

© IBM Researc h. Presen ted by David Ungar at Splash 2011 79
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Intention lock check after

find bucket

write my thread ID in lock
make new node \

read head from bucket

return if duplicate at head

set new node next from head

store new node into bucket

J

ﬁ nis h ed ' © IBM Research. Presented by David Ungar at Splash 2011

lock = my thread |D?

©l
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Mitigation Strategies

® Atomic instruction for storing head (lock-
free approach)

® Check bucket before storing head

® Check intention-lock before and/or after
store

® Just pass the buck to a higher level

Which would you choose!

31




The Experiment
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Experiments

® Platform: 8-core Mac

® Multicore, not manycore
® Varying # threads: |, 8
® Varying list strategies

® Varying experiments
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List strategies

® unchecked

® check list head

® check intention lock
® before
® after
® before & after

® compare-and-swap (CAS)
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Experiments

® no contention: each thread inserts into a
different list

® max contention: each thread inserts into
the same list

® max with retries: after each insert attempt:
® wait insert time, exit if insert succeeded

® if not, binary exponential backoff (<128)
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Results
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Disclaimer:
Unreviewed Work!!!
Contains errors




MIE IR =N

® Miss rate: how many insertion attempts fail

® NO contention: no misses

no contention
unchecked max contention
with retries

no contention
check-lock-before max contention [l Y
with retries

no contention
check-lock-after max contention
with retries

no contention
check-lock-bef/aft max contention
with retries

no contention

check-list-head max contention [N Y

with retries

no contention
CAS max contention | W
with retries

8-core Mac 0% 10% 20% 30% 40% 50% 60% 70% 80%

w
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Iterations:
How many times around the loop!?
(mean iterations per insert attempt)

8-core Mac Pro

unchecked | %
check-lock-before
check-lock-after
check-lock-bef/aft
check-list-head w
CAS *

I |0 100 1,000 10,000

iterations / insert attempt
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How much time per insert attempt!?
(Excluding duplicate-search time)
one thread

no contention
unchecked max contention
max w/ retries

no contention
check-lock-before max contention
max w/ retries

no contention
check-lock-after max contention
max w/ retries

no contention
check-lock-bef/aft max contention
max w/ retries

no contention
check-list-head max contention
max w/ retries

no contention
CAS max contention
max w/ retries

8-core Mac

100 1,000 10,000 100,000 1,000,000
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How much time per insert attempt!?

(Excluding duplicate-search time)
8 threads

no contention
unchecked max contention
max w/ retries

no contention
check-lock-before max contention
max W/ retries

B R

no contention
check-lock-after max contention
max w/ retries

no contention
check-lock-bef/aft max contention
max w/ retries

no contention
check-list-head max contention
max w/ retries

).

no contention
CAS max contention
max w/ retries

*

8-core Mac
100 1,000 10,000 100,000 1,000,000
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Miss rate vs time, 8-core Mac

1)
80% check lock after m Unchecked

70%

107

50%
40% check list head

miss rate

compare and swap

30%

pA

10%

)7 L]

600 900 1200 1500

insertion ns

one thread
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SUCCESSEeS SUCcessSes v attempts

ns attempt ns

unchecked

check-lock-before

check-lock-after

check-lock-bef/aft

check-list-head

CAS

0 150 300 450 600 750 900

successes / ms (bigger is better)
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Summary: Parallel Sets

® Probabilistic data structures:
® New area!’

® Hypothesis: accuracy trades off against
performance

® CAS may not win

® Big penalty on current hardware
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An aside: freeing

cell set constraint set

constraint

constraint

Easy if you can count on the invariants
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An aside: freeing

cell set constraint set

constraint

constraint

Harder if you cannot count on the invariants
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Conclusion

® Hardware trends will force us to give up on
certainty, determinism, repeatability

® Good enough, soon enough, race-and-
repair, anti-lock

® A different way of thinking
® invariants become probable
® New data structures & algorithms

® Can we do it!?
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