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How we got Smalltalk 
• PARC living in the future with expensive but 

fast hardware + graphics

• cycles for

• interpreter

• dynamic dispatch

• garbage collection

• small methods

• reusable collection classes
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• Why?

• Continued demand to handle more data

• clock speed

• device density

• What?

• Much less (fast) memory per thread

• Spatial locality critical for performance

• Many (slower) cycles, all at the same time

Now, the future is manycore

3
3Wednesday, November 2, 11



© IBM Research. Presented by David Ungar at Splash 2011

Fundamental Issues

performance correctness
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Amdahl’s law
1 core, 10 secs

essentially serial
parallelizable

10 cores
2 secs

∞ cores Exterminate!

> 1 sec
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Scaling
implies

Serial portion

implies

synchronization
6

6Wednesday, November 2, 11



© IBM Research. Presented by David Ungar at Splash 2011

Synchronization is Bad

Sca
ling 

Synchronization 

Why can’t we eliminate synchronization
(in the programming paradigm)?

Too much ➔ slow
Too little ➔ errors

performance
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Fundamental Issues

performance correctness
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Yesterday Today Tomorrow
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Too hard to
get it right

when parallel

Cannot even try to
get it right

without synchronization
10
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The future:
No sync at all

• “anti-lock”  

• “race-and-repair”

• “end-to-end nondeterminism”

•Without synchronization:

•will not always get exact answers
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performance correctness

Get it wrong,
quickly,
but still

right enough
12
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Fundamental trade-off?

performance correctness
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Ensembles &
Adverbs

Fresheners & 
Breadcrumbs

nil

nil

APL➝A ST➝B
Locals & 

Breadcrumbs

Mitigate,
Race,
Repair

Fundamental
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Romeo 
and 
Juliet

http://karenswhimsy.com/romeo-and-juliet.shtm

Spoiler alert!
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Friar Lawrence hatches a plan
16
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Juliet fakes death with a 
drug.

Friar John is sent to tell 
Romeo
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• John is delayed by quarantine

• Servant tells Romeo that Juliet is dead

• Romeo goes to tomb

• Romeo kills himself

• Friar Lawrence arrives with message to 
Romeo
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Juliet wakes 

to find a 

dead Romeo
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Juliet kills herself
20
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• Juliet feigns death to avoid marrying Paris

• Friar Lawrence sends Friar John to tell Romeo of 
plan

• John is delayed by quarantine

• Servant tells Romeo that Juliet is dead

• Romeo goes to tomb

• Romeo kills himself

• Friar Lawrence arrives with message to Romeo

• Juliet wakes, sees Romeo dead, kills herself

Summary
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Friar JulietRomeo

fakes death

sends plan to R

hears of plan

goes to tomb

devises plan, gives J drug

awakens

R & J elopeThe original plan:
A happy ending
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Friar JulietRomeo

fakes death

sends plan to R

hears of death

kills himself

hears of plan

delay

devises plan, gives J drug

awakens

kills herself

sees R deadRace condition:
Incorrect result

goes to tomb
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Friar JulietRomeo

fakes death

sends plan to R

hears of death

waits

hears of plan

delay

devises plan, gives J drug

awakens

R & J elope
Waiting before side-effect:

Improves chances

goes to tomb
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Fundamental trade-off

performance correctness
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Other Ideas
(not really covered)
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“Lock-Free” algorithms
• Critical section limited to atomic 

instructions

• compare-and-swap

• lwarx & stwx

• Instruction may “fail” forcing a retry loop

• No waiting visible to programmer

• But atomic instructions implicitly 
synchronize

➡ may not scale!
27
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Read-Copy Update
• Readers run concurrently with updaters

• Updaters update a copy if needed

• After all readers done, updaters serially swap-
in updated copy

• Handles removal

• Good lessons to learn

• Still pays synchronization costs, esp. for 
updating: guaranteed to not miss updates
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Functional Programming

• Lack of side-effects hides many ordering 
dependencies

• But, a poor match for modeling stateful 
systems

• Functional composition: f(g(x))

• still induces ordering dependencies

➡ some synchronization required
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Other Deterministic 
Programming Approaches

• Let the programmer specify dependencies

• System reorders and parallelizes execution

• Does not push programmer hard enough 
to relinquish determinism
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Actors

• Determinism within an actor eases 
programming task

• But, message arrival ordering still creates 
need to deal with nondeterminism
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Other approaches 

still cling to 

correctness
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Root cause:
Our  Attraction to Certainty
• Definite state

• x holds 17

• Definite order

• input ➔ process ➔ output

• serialized message queues

• Definite results

• 1 + 1 = 2
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Ensembles &
Adverbs

Fresheners & 
Breadcrumbs

nil
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Biology, not Math
Massive parallelism with state:

Many locally (re)acting individuals

Surprisingly complex overall behavior

Emergence
35
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Birds don’t need π calculus

Separation: steer to avoid 
crowding local flockmates

Alignment: steer towards the 
average heading of local 
flockmates

Cohesion: steer to move toward 
the average position of local 
flockmate

Craig Reynods, 1986, Boids
(Flocks, Herds, and Schools: a Distributed Behavioral Model) 36
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No app-level 

50 SlyBoids, 50 Tilera cores

© IBM Research. Presented by David Ungar at Splash 2011
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Ensemble
One & Many

Parallel activities

Unsynchronized
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Idea:
Separate how from what (and who);

factor out the strategy:
subject + verb + adverb

receiver.selector(argument --modifier)

Ensemble computation varies from

execution strategies
Independent

& Parallel
Dependent

 & Serial

result handling strategies
Ensemble
of results

Reduced to a 
Single Object

39
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Ensembles &
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What’s a cube?
(OLAP = Online Analytical Processing)

• To a first approximation: It’s a 
multidimensional spreadsheet
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Our OLAP Cubes’ 
Features

• In-memory – to be practical for interactive 
update / recalculate

• Not represented by a standard Relational 
Database, thus MOLAP

• Write-back – users update values e.g. for 
financial forecasting / budgeting

• Concurrent –  up to 100’s or 1000’s of users
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Users Want Scalability

• Budget deadlines, 1000’s of users, some 
doing vast queries, many others doing 
detailed entry and review

• Scaling / Performance wall (long running 
reads, serializing writes)

• Readers-writer lock contention
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Data cells linked by
one-way constraints
• Could be any (acyclic) shape

• “Entered Cells” = user types in data

• “Computed Cells” = hold sums, etc.

• Aggregates & Formulae results

• Computed on demand

• Cache results for performance
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2010 Q1,
cod,

unitPrice:
2

2010 Q1,
cod,

quantity:
10

2010 Q1,
tuna,

unitPrice:
3

2010 Q1,
tuna,

quantity:
15

2010 Q2,
cod,

unitPrice:
2

2010 Q2,
cod,

quantity:
10

2010 Q2,
tuna,

unitPrice:
3

2010 Q2,
tuna,

quantity:
15

entered cells

2010 Q1,
cod,
cost:
×

2010,
tuna,

quantity:
+

all,
all,

quantity:
+  +  +

computed cells
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2010 Q1,
cod,

unitPrice:
2

2010 Q1,
cod,

quantity:
10

2010 Q1,
cod,
cost:

nil

Naive Caching
tim

e
0A. unitPrice = 2, quantity = 10
1A. Alice requests cost
2A. Alice sees empty cache
3A. value calculated is 20
4A. 20 is cached to
save recalculation

1B. Bob changes unitPrice,
 invalidates cache

1C. Cathy requests cost
2C. Cathy sees empty cache
3C. Cost recalculated & cached

Works when serial
Fails when concurrent

20

3

30

4C. Cathy gets fresh cost
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ca
lc

ul
at

in
g

Naive caching fails:
leaves stale result cached forever

tim
e

0A. unitPrice = 2

1A. Alice requests cost value

2A. calculation commences

3A. calculation finishes,
stores wrong value in cache

1C. Cathy requests cost,
reads wrong value from cache

1D. Dan requests cost,
reads wrong value from cache

1E. Elly May requests cost,
reads wrong value from cache

1B. Bob changes unitPrice to 10

2B. cost cache is invalidated
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w
ai

tin
g

Naive parallel solution: 
lock allows N readers OR one writer

tim
e

0A. unitPrice = 2

1A. Alice requests cost value, gains lock

2A. calculation commences

3A. calculation finishes,
stores iffy value in cache
releases lock

1C. Cathy requests cost,
gets lock, sees empty cache,
recalculates & caches,
reads right value from cache
releases lock

2B. Bob gets lock,
changes unitPrice,
invalidates cost cache,
releases lock

1B. Bob tries to change unitPrice,
has to wait for lock

ca
lc

ul
at

in
g
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ca
lc

ul
at

in
g

Asynchronous freshener 
eventually fixes error 

without locking

tim
e

“race and repair”

0A. unitPrice = 2

1A. Alice requests cost value

2A. calculation commences

3A. calculation finishes,
stores wrong value in cache

1C. Cathy requests cost,
reads wrong value from cache

1D. Dan requests cost,
reads right value from cache

1E. Elly May requests cost,
reads right value from cache

1B. Bob changes unitPrice to 10

2B. cost cache is invalidated

1F. Freshener recalculates cost cell, caching result
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ca
lc

ul
at

in
g

Breadcrumbs: Avoid caching
(some) stale results

Mitigate nondeterminism

tim
e

2A. Alice drops her breadcrumb

3A. calculation commences

4A. calculation finishes

1C. Charles requests cost,
cache is empty, recalculates and caches right result

1D. Doris requests cost,
reads right value from cache

1E. Ephraim requests cost,
reads right value from cache

1B. Bob changes unitPrice to 10

2B. cost cache is invalidated

1A. Alice requests cost value

5A. Alice picks up Bob’s breadcrumb,
aborts cache store, gets reasonable result

Imperfect
Many variations

3B. Bob drops his breadcrumb
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Synchronization 
prevents scaling
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600 cell Fish Market, Smalltalk model

without breadcrumbs

without breadcrumbs

with breadcrumbs

with breadcrumbs

Reducing incidence of 
staleness without sync
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1 year Fish Market, Smalltalk model

Mac:
always use 8 cores
0 to 7 fresheners

8 down to 1 workers

Tilera:
always use 16 cores
0 to 14 fresheners

16 down to 2 workers

Example:
With one freshener per worker,  < 20% of results 

were stale

Invalidation + Breadcrumbs
+ Round-Robin Fresheners
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 at 1 freshener per 1 
worker,

90% of the stale 
results are < 8 query 

times stale.

Mac:
always use 8 cores
0 to 7 fresheners

8 down to 1 workers

Tilera:
always use 16 cores
0 to 14 fresheners

16 down to 2 workers

How stale?
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How often & how stale?

0
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 at 1 freshener per 1 worker,
90% of the stale results are < 8 

query times stale
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Tilera: using 16 cores, 0 – 14 fresheners, 16 – 2 workers16 down to 2 workers

With one freshener per worker, 
< 20% of results were stale

So, only 2% of all queries 
return results staler than 8.
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Summary: Fresheners

• Instead of synchronizing cache invalidation with 
recomputation, allow data race errors

• Freshen possibly-stale caches in parallel

• < 2% queries staler than 8 query times

• Race & Repair:  Antilock Computing

Embrace and manage inconsistency to 
enable scaling

Inconsistency Robustness for Scalability in 
Interactive Concurrent-Update In-Memory 

MOLAP Cubes,
with Kimelman & Adams
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Ensembles &
Adverbs

Fresheners & 
Breadcrumbs

nil

nil

APL➝A ST➝B
Locals & 

Breadcrumbs

Mitigate,
Race,
Repair

Fundamental
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Background
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58Wednesday, November 2, 11



© IBM Research. Presented by David Ungar at Splash 2011

Adding cells to our Cube

• Example: adding a new quarter of fish data

• Cells accessed by hash tables

• What happens without sync?
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nil

nil APL➝A ST➝B

bucket 
array

next

contents

next

contents

nil APL➝A ST➝BJS➝C

nil APL➝A ST➝BJS➝C

nil

nil

nil APL➝A ST➝BJS➝C

nil

(Self, A+)

Initial state

add JS➝C

add JS➝B

add Self➝A+
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for ( node = buckets[assoc->key->hash()];
       node != NULL; 
       node = node->next)
    if (node->contents->key == assoc->key)
        return // already there!
new_node = new Node()
new_node->contents = assoc
new_node->next = buckets[assoc->key->hash()]
buckets[assoc->key->hash()] = new_node

add(assoc)
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for ( node = buckets[assoc->key->hash()];
       node != NULL; 
       node = node->next)
    if (node->contents->key == assoc->key)
        return // already there!
new_node = new Node()
new_node->contents = assoc
new_node->next = buckets[assoc->key->hash()]
buckets[assoc->key->hash()] = new_node

add(assoc)
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bp = &buckets[assoc->key->hash()]
for ( node = *bp;
      node != NULL;
      node = node->next)
    if (node->contents->key == assoc->key)
        return // already there!
new_node = new Node()
new_node->contents = assoc
new_node->next = *bp
*bp = new_node

add(assoc)
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bp = &buckets[assoc->key->hash()]

<return if duplicate at *bp>

new_node = new Node()

new_node->contents = assoc

new_node->next = *bp

*bp = new_node

add(assoc)
find bucket

return if duplicate in bucket

make new node

set new node next from bucket

store new node into bucket

64
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Parallel Chaos

65
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Interleavings: one winner
Can miss an insertion
find bucket

return if duplicate in bucket

make new node

set new node next from bucket

store new node into bucket

find bucket

return if duplicate in bucket

make new node

set new node next from bucket

store new node into bucket

66
66Wednesday, November 2, 11



© IBM Research. Presented by David Ungar at Splash 2011

Interleavings: two winners: 
can add same key twice

find bucket

return if duplicate in bucket

make new node

set new node next from bucket

store new node into bucket

find bucket

return if duplicate in bucket

make new node

set new node next from bucket

store new node into bucket
67
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nil

nil APL➝A ST➝B

bucket array

next

contents

next

contents

Initial state

nil APL➝A ST➝BJS➝C

nil APL➝A ST➝BJS➝B

nil

nil

add JS➝C

add JS➝B

while

nil APL➝A ST➝BJS➝C

nil

JS➝BFinal state
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Bounding the error

69
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A simple fix, without 
synchronization

bp = &buckets[assoc->key->hash()]
head = *bp
for ( node = head;  node != NULL;  
       node = node->next)
    if (node->contents->key == assoc->key)
        return; // already there!
new_node = new Node();
new_node->contents = assoc;
new_node->next = head
*bp = new_node
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bp = &buckets[assoc->key->hash()]

head = *bp

<return if duplicate at head>

new_node = new Node()

new_node->contents = assoc

new_node->next = head

*bp = new_node

add(assoc)

read head from bucket

return if duplicate at head

make new node

set new node next from head

store new node into bucket

find bucket
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Cannot add same key twice!
Despite unsynchronized

read head from bucket

return if duplicate at head

make new node

set new node next from head

store new node into bucket

find bucket

read head from bucket

return if duplicate at head

make new node

set new node next from head

store new node into bucket

find bucket

72
72Wednesday, November 2, 11



© IBM Research. Presented by David Ungar at Splash 2011

Can still fail to insert different key

read head from bucket

return if duplicate at head

make new node

set new node next from head

store new node into bucket

find bucket

read head from bucket

return if duplicate at head

make new node

set new node next from head

store new node into bucket

find bucket
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Mitigation 
Strategies

74
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No check

store new node into 

read head from bucket

return if duplicate at head

make new node

set new node next from head

find bucket
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Compare-and-Swap

store new node into bucket

read head from bucket

return if duplicate at head

make new node

set new node next from head

lock bucket

find bucket

bucket = head?

unlock bucket

unlock bucket

yes
no

all in one instruction
76
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Check head before store

store new node into bucket

read head from bucket

return if duplicate at head

make new node

set new node next from head

find bucket

bucket = head?
yes

no
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Intention locks
nil

nil APL➝A ST➝B

bucket array

next

contents

next

contents

nil

nil APL➝A ST➝B

bucket array

next

contents

next

contents

lock array

Put thread ID in lock when starting,
Check lock before/after store
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Intention lock check before

store new node into bucket

write my thread ID in lock

read head from bucket

return if duplicate at head

set new node next from head

make new node

lock = my thread ID?

yes
no

find bucket
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Intention lock check after

finished!

make new node

read head from bucket

return if duplicate at head

set new node next from head

write my thread ID in lock

lock = my thread ID?
yes no

find bucket

store new node into bucket

80 © IBM Research. Presented by David Ungar at Splash 2011
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Mitigation Strategies
• Atomic instruction for storing head (lock-

free approach)

• Check bucket before storing head

• Check intention-lock before and/or after 
store

• Just pass the buck to a higher level

Which would you choose?
81
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The Experiment
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Experiments

• Platform: 8-core Mac

• Multicore, not manycore

• Varying # threads: 1, 8

• Varying list strategies

• Varying experiments
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List strategies

• unchecked

• check list head

• check intention lock 

• before

• after

• before & after

• compare-and-swap (CAS)
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Experiments

• no contention: each thread inserts into a 
different list

• max contention: each thread inserts into 
the same list

• max with retries: after each insert attempt:

• wait insert time, exit if insert succeeded

• if not, binary exponential backoff  (<128)
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Results
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Disclaimer:
Unreviewed Work!!!

Contains errors
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Miss rate results
• Miss rate: how many insertion attempts fail

• no contention: no misses

 unchecked

 check-lock-before

 check-lock-after

 check-lock-bef/aft

 check-list-head

 CAS

no contention
max contention

with retries
no contention

max contention
with retries

no contention
max contention

with retries
no contention

max contention
with retries

no contention
max contention

with retries
no contention

max contention
with retries

0% 10% 20% 30% 40% 50% 60% 70% 80%8-core Mac
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Iterations:
How many times around the loop?

(mean iterations per insert attempt)
8-core Mac Pro

 unchecked
 check-lock-before

 check-lock-after
 check-lock-bef/aft

 check-list-head
 CAS

1 10 100 1,000 10,000

iterations / insert attempt
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How much time per insert attempt?
(Excluding duplicate-search time)

one thread
 unchecked

 check-lock-before

 check-lock-after

 check-lock-bef/aft

 check-list-head

 CAS

no contention
max contention
max w/ retries
no contention

max contention
max w/ retries
no contention

max contention
max w/ retries
no contention

max contention
max w/ retries
no contention

max contention
max w/ retries
no contention

max contention
max w/ retries

100 1,000 10,000 100,000 1,000,000
ns

8-core Mac
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How much time per insert attempt?
(Excluding duplicate-search time)

8 threads
 unchecked

 check-lock-before

 check-lock-after

 check-lock-bef/aft

 check-list-head

 CAS

no contention
max contention
max w/ retries
no contention

max contention
max w/ retries
no contention

max contention
max w/ retries
no contention

max contention
max w/ retries
no contention

max contention
max w/ retries
no contention

max contention
max w/ retries

100 1,000 10,000 100,000 1,000,000
ns

8-core Mac
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0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 300 600 900 1200 1500

m
is

s 
ra

te

insertion ns

Miss rate vs time, 8-core Mac

check lock after

check list head compare and swap

unchecked

one thread

concurrency 

penalty
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 unchecked

 check-lock-before

 check-lock-after

 check-lock-bef/aft

 check-list-head

 CAS

0 150 300 450 600 750 900

successes / ms (bigger is better)
8-core Mac (But one thread = 5,600)

successes
ms

= successes
attempt

× attempts
ms
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Summary: Parallel Sets

• Probabilistic data structures:

• New area?

• Hypothesis: accuracy trades off against 
performance

• CAS may not win

• Big penalty on current hardware

94
94Wednesday, November 2, 11



© IBM Research. Presented by David Ungar at Splash 2011

An aside: freeing

cell constraint

constraint

constraint

cell

cell

cell

Easy if you can count on the invariants

cell set constraint set
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An aside: freeing

cell constraint

constraint

constraint

cell

cell

cell

Harder if you cannot count on the invariants

cell set constraint set
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Conclusion
• Hardware trends will force us to give up on 

certainty, determinism, repeatability

• Good enough, soon enough, race-and-
repair, anti-lock

• A different way of thinking

• invariants become probable

• New data structures & algorithms

• Can we do it?
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